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A novel approach to 1,2k5-azaphosphinines has been elaborated. Aminophosphonium chlorides bearing a
b-dialkylaminocrotonic nitrile residue react with N,N-dimethylformamide dimethylacetal to afford 1,2k5-
azaphosphinines.
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Phosphorus-containing heterocycles are a less numerous and
less accessible class of compounds in comparison with nitrogen
or sulfur heterocycles.1 However, interest in this class of com-
pounds, especially those with an endocyclic P–C bond, has in-
creased due to their applications in a wide variety of areas, such
as model compounds in fundamental research,2 as ligands for
new catalysts,3 for modifying the properties of materials,4 as
important building blocks for drug discovery,5 etc.

In continuation of our studies directed toward the synthesis of
phosphaheterocycles6 we have discovered a very simple method
for the synthesis of 1,2k5-azaphosphinines starting from linear
phosphorylated enamines.

The heterocyclic 1,2k5-azaphosphinine system has been
mentioned in the literature in only a few papers. Methods for the
synthesis of this heterocycle are depicted in Figure 1. 1,2k5-Aza-
phosphinines were synthesized initially by Khusainova et al. in
1982 starting from allene II and phosphorylated amidines III
(Route 1).7 Later, Nitta and coworkers reported the Diels–Alder
reaction of vinylimidophosphates V with acetylenes IV to afford
the desired compounds (Route 2).8 Foucaud and coworkers
obtained 1,2k5-azaphosphinines starting from PhPCl2 and aliphatic
imines VI via 1,2-dihydro-1,2-azaphosphinines VII (Route 3).9

Recently, we have found a convenient approach to k5-phosphi-
nines based on the reaction of a phosphonium salt (derivative of
phosphorylated b-pyrrolidinylcrotonitrile), as a 1,5-bisnucleophile,
ll rights reserved.
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with the 1,1-biselectrophile, N,N-dimethylformamide dimethyl-
acetal (DMFDMA).6a In this work we apply this approach to the
synthesis of 1,2k5-azaphosphinines starting from the correspond-
ing aminophosphonium chlorides VIII (Route 4). For the synthesis
of the aminophosphonium chlorides VIII we used phosphonites 3
as the starting materials (Scheme 1). Compounds 3 were synthe-
sized in two-steps via phosphorylation of enaminonitrile 1 using
earlier developed procedure (yields: 3a: 57%, 3b: 73%).10 It should
be noted that compounds 3 could be used in the subsequent steps
without isolation, but isolation of 3 increases yields of the subse-
quent transformations. Oxidation of phosphonites 3 into amino-
phosphonium chlorides 5 was performed in two-steps via
oxidation into chlorophosphonium chlorides 4 using C2Cl6

followed by treatment with gaseous ammonia.6c,11 The yields of
the crude aminophosphonium chlorides 5 were nearly quantitative
and these compounds were used in the next step without addi-
tional purification. Heating aminophosphonium chlorides 5 in
DMFDMA led to the desired 1,2k5-azaphosphinines 6 (Scheme
1).12 It should be noted that azaphosphinines 6 were stable in air
over long periods of time (more than one year), unlike the azaphos-
phinines described earlier by Foucaud.

The structures of the obtained 1,2k5-azaphosphinines were
confirmed by 1H, 13C, and 31P NMR spectroscopy, mass spec-
trometry, and elemental analyses. Characteristic features of the
1,2k5-azaphosphinine ring in the 1H NMR spectra are spin–spin
coupling interactions between the phosphorus atom and the
protons of the ring, and in 13C NMR spectra, the signals of
the carbon atoms with characteristic C–P coupling constants
(Fig. 2).
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Figure 1. Methods for the synthesis of 1,2k5-azaphosphinines.
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To rationalize the reaction we can consider two possible reac-
tion pathways. Thus, the aminophosphonium chlorides bear two
active functions, namely P–NH2 and the Me group that are capable
of reacting with DMFDMA.6a In both cases, after DMFDMA reaction
followed by deprotonation, a phosphazahexatriene system could
be generated (Scheme 2). In this case DMFDMA also acts as a base
generating MeO� and Me2N� on heating.13 Electrocyclization of
either of these systems with subsequent elimination of dimethyl-
amine would lead to the final 1,2k5-azaphosphinines. The exact
pathway of the cyclization reaction is still under discussion and
needs additional investigation. However, route A involving
DMFDMA insertion into the methyl group of the enamine fragment
seems more feasible due to the absence of literature data on the
reaction of aminophosphonium salts with DMFDMA with partici-
pation of the amino function.

In conclusion, a convenient approach to 1,2k5-azaphosphinines
was developed starting from readily available compounds. The to-
tal yields of the products starting from b-dialkylaminocrotonic ni-
trile are 25–40%. The approach is attractive for future investigation
of this class of compounds.
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Figure 2. Diagnostic 1H and 13C NMR data of 1,2k5-phosphinines 6a and [6b].
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